Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhi-Wei Xu, ${ }^{\text {a }}$ Jun-Ying Yang, ${ }^{\text {a }}$ Yun-Long Fu ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\text {b }}$ *

${ }^{\mathrm{a}}$ School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.040$
$w R$ factor $=0.081$
Data-to-parameter ratio $=16.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Poly[tris(ethylene-1,2-diammonium) bis[aqua(μ-sulfato- $\left.\kappa^{3} O, O^{\prime}: O^{\prime \prime}\right)\left(\mu\right.$-sulfato- $\left.\kappa^{4} O, O^{\prime}: O^{\prime \prime}, O^{\prime \prime \prime}\right)$ -(sulfato- κO)terbate(III)] tetrahydrate]

The Tb atom in the title compound, $\left\{\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{3}\left[\mathrm{~Tb}\left(\mathrm{SO}_{4}\right)_{3^{-}}\right.\right.$ $\left.\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, exists in a nine-coordinate geometry; the anion is linked through sulfate bridges into a three-dimensional network. The counter-ions and water molecules occupy the spaces within the framework and they consolidate the network structure through extensive hydrogen bonds.

Comment

The Ho atom in the dimethylammonium rare-earth sulfate double-salt $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]\left[\mathrm{Ho}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ exists in a bicapped trigonal prism in which four water molecules and two chelating sulfato groups comprise the coordination polyhedron. The study also reported the space group of the Y, Tb, Dy and Er analogues (Arhar et al., 1984); presumably, the $\mathrm{Tb}^{\text {III }}$ compound has the same structure.

In the ethylenediammonium sulfatoterbate(III) (I), the $\left[\mathrm{Tb}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3-}$ anions are linked though sulfato bridges into a three-dimensional network (Fig. 1). The counter-ions and water molecules occupy the spaces within the framework and they consolidate the structure through extensive hydrogen bonds (Table 2). The metal is nine-coordinate (Fig. 2).

Figure 1
Part of the polymeric structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii. [Symmetry codes: (i) $x+1, y, z$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $-x$, $-y+1,-z+1$.]

Received 13 July 2006 Accepted 14 July 2006

Figure 2
ORTEPII (Johnson, 1976) plot illustrating the nine-coordinate geometry of Tb . Symmetry codes are as in Fig. 1 and Table 1.

Experimental

Terbium oxide, $\mathrm{Tb}_{4} \mathrm{O}_{7}(0.02 \mathrm{~g}, 0.03 \mathrm{mmol})$, was dissolved in an ethanol/water mixture $(5 \mathrm{ml} / 7 \mathrm{ml})$, and to the solution were added concentrated sulfuric acid $(0.12 \mathrm{ml})$ and ethylenediamine $(0.06 \mathrm{ml}$, slight molar excess). The mixture was transferred into a 15 ml Telfonlined stainless steel Parr bomb. The bomb was heated at 383 K for 2 d . After cooling the bomb to room temperature, colourless rod-like crystals were harvested by filtration in about 50% yield.

Crystal data

$\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{3}\left[\mathrm{~Tb}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1188.66$
Monoclinic, $P 2_{1} / c$
$a=6.5024$ (4) А
$b=26.392$ (2) \AA
$c=9.9070(7) \AA$
$\beta=103.733$ (1) ${ }^{\circ}$
$V=1651.5(2) \AA^{3}$

Data collection

Bruker SMART APEX area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.556, T_{\text {max }}=0.871$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.081$
$S=1.11$
3763 reflections
229 parameters
H-atom parameters constrained

$Z=2$

$D_{x}=2.390 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=4.75 \mathrm{~mm}^{-1}$
$T=291$ (2) K
Rod, colourless
$0.14 \times 0.06 \times 0.03 \mathrm{~mm}$

13711 measured reflections 3763 independent reflections
3244 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0304 P)^{2}\right. \\
&+2.0826 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.19 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.53 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

Tb1-O1	2.307 (4)	Tb1-O10	2.489 (4)
Tb1-O5	2.465 (4)	$\mathrm{Tb} 1-\mathrm{O} 11^{\text {ii }}$	2.521 (4)
Tb1-O6	2.506 (4)	$\mathrm{Tb} 1-\mathrm{O} 12{ }^{\text {ii }}$	2.479 (4)
$\mathrm{Tb} 1-\mathrm{O} 7^{\text {i }}$	2.368 (4)	Tb1-O1w	2.385 (4)
Tb1-O9	2.530 (4)		
$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 5$	129.7 (1)	$\mathrm{O} 6-\mathrm{Tb} 1-\mathrm{O} 11^{\text {ii }}$	121.8 (1)
$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 6$	74.2 (1)	$\mathrm{O} 6-\mathrm{Tb} 1-\mathrm{O} 12^{\text {ii }}$	72.7 (1)
$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 7^{\mathrm{i}}$	80.7 (1)	$\mathrm{O} 6-\mathrm{Tb} 1-\mathrm{O} 1 w$	73.3 (1)
$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 9$	141.7 (1)	$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Tb} 1-\mathrm{O} 9$	78.0 (1)
$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 10$	147.2 (1)	$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Tb} 1-\mathrm{O} 10$	77.9 (1)
$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 11^{\text {ii }}$	77.4 (1)	$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Tb} 1-\mathrm{O} 1{ }^{\text {ii }}$	71.6 (1)
$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 12^{\text {ii }}$	86.7 (1)	$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Tb} 1-\mathrm{O} 12^{\text {ii }}$	127.4 (1)
$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{O} 1 w$	77.2 (1)	$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Tb} 1-\mathrm{O} 1 w$	80.5 (1)
O5-Tb1-O6	56.4 (1)	$\mathrm{O} 9-\mathrm{Tb} 1-\mathrm{O} 10$	55.8 (1)
$\mathrm{O} 5-\mathrm{Tb} 1-\mathrm{O} 7^{\mathrm{i}}$	148.2 (1)	$\mathrm{O} 9-\mathrm{Tb} 1-\mathrm{O} 11^{\text {ii }}$	124.1 (1)
$\mathrm{O} 5-\mathrm{Tb} 1-\mathrm{O} 9$	71.4 (1)	$\mathrm{O} 9-\mathrm{Tb} 1-\mathrm{O} 12^{\text {ii }}$	131.4 (1)
$\mathrm{O} 5-\mathrm{Tb} 1-\mathrm{O} 10$	77.8 (1)	$\mathrm{O} 9-\mathrm{Tb} 1-\mathrm{O} 1 w$	68.1 (1)
$\mathrm{O} 5-\mathrm{Tb} 1-\mathrm{O} 11^{\text {ii }}$	119.2 (1)	$\mathrm{O} 10-\mathrm{Tb} 1-\mathrm{O} 11^{\text {ii }}$	72.4 (1)
$\mathrm{O} 5-\mathrm{Tb} 1-\mathrm{O} 12^{\text {ii }}$	71.0 (1)	$\mathrm{O} 10-\mathrm{Tb} 1-\mathrm{O} 12^{\text {ii }}$	86.8 (1)
$\mathrm{O} 5-\mathrm{Tb} 1-\mathrm{O} 1 w$	95.9 (1)	$\mathrm{O} 10-\mathrm{Tb} 1-\mathrm{O} 1 w$	122.7 (1)
$\mathrm{O} 6-\mathrm{Tb} 1-\mathrm{O} 7^{\mathrm{i}}$	147.0 (1)	$\mathrm{O} 11^{\mathrm{ii}}-\mathrm{Tb} 1-\mathrm{O} 12^{\mathrm{ii}}$	55.8 (1)
$\mathrm{O} 6-\mathrm{Tb} 1-\mathrm{O} 9$	109.3 (1)	$\mathrm{O} 11^{\text {ii }}-\mathrm{Tb} 1-\mathrm{O} 1 w$	144.8 (1)
$\mathrm{O} 6-\mathrm{Tb} 1-\mathrm{O} 10$	133.5 (1)	$\mathrm{O} 12{ }^{\text {iii }}-\mathrm{Tb} 1-\mathrm{O} 1 w$	145.2 (1)

Symmetry codes: (i) $x+1, y, z$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 3$	0.85	1.79	2.623 (6)	165
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 8^{\mathrm{i}}$	0.85	2.36	2.942 (6)	127
$\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots \mathrm{O} 2$	0.85	1.93	2.750 (6)	161
$\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O} 4^{\text {vii }}$	0.85	1.94	2.785 (6)	176
$\mathrm{O} 3 w-\mathrm{H} 3 w 1 \cdots \mathrm{O} 2 w^{\text {vii }}$	0.85	2.04	2.852 (8)	159
$\mathrm{O} 3 w-\mathrm{H} 3 w 2 \cdots \mathrm{O} 9^{\text {iv }}$	0.85	2.24	2.888 (7)	133
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1 \cdots \mathrm{O}^{\text {v }}$	0.85	1.97	2.811 (6)	173
N1-H1N2...O6	0.85	2.17	2.984 (6)	159
N1-H1N3 . ${ }^{\text {a }}$ 3 w	0.85	2.10	2.891 (8)	156
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} 1 \cdots \mathrm{O} 10^{\text {vi }}$	0.85	2.11	2.958 (6)	177
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} 2 \cdots \mathrm{O} 5^{\text {iv }}$	0.85	2.28	3.009 (6)	145
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} 3 \cdots \mathrm{O} 2^{\text {iv }}$	0.85	2.17	2.959 (7)	155
N3-H3N1 \cdots O6 ${ }^{\text {iii }}$	0.85	2.50	3.308 (6)	159
N3-H3N2 \cdots O $2 w$	0.85	1.97	2.758 (7)	155
N3-H3N3 $\cdots \mathrm{O}^{\text {v }}$	0.85	1.99	2.835 (6)	171

Symmetry codes: (i) $x+1, y, z$; (iii) $-x,-y+1,-z+1$; (iv) $x, y, z+1$; (v) $x-1, y, z$; (vi) $x-1,-y+\frac{1}{2}, z+\frac{1}{2}$, (vii) $-x+1,-y+1,-z+2$.

H atoms were placed at calculated positions ($\mathrm{C}-\mathrm{H}=0.97 \AA, \mathrm{~N}-$ $\mathrm{H}=0.85 \AA$ and $\mathrm{O}-\mathrm{H}=0.85 \AA$) and were included in the refinement in the riding model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$ and $1.5 U_{\text {eq }}(\mathrm{N})$; the amino groups were rotated to fit the electron density. The largest peak was about $1 \AA$ from Tb 1 and the deepest hole was about 1 A from O9.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the Natural Scientific Foundation Committee of Shanxi Province (No. 20041031) and the University of Malaya for generously supporting this study.

metal-organic papers

References

Arhar, A., Golic, L., Jordanovska, V. \& Siftar, J. (1984). Vestn. Slov. Kem. Drus. (Bull. Solv. Chem. Soc.), 28, 311-320.
Bruker (2003). SAINT (Version 6.36A) and SMART (Version 6.36A). Bruker AXS Inc., Madison, Wisconsin, USA.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany

[^0]: © 2006 International Union of Crystallography All rights reserved

